Uranium in aquatic sediments; where are the guidelines?

Michelle Iles Earth Water Life Sciences Darwin, Australia

URAM 2009

IAEA

International symposium on uranium raw material for the nuclear fuel cycle 22 - 26 June 2009

Vienna, Austria

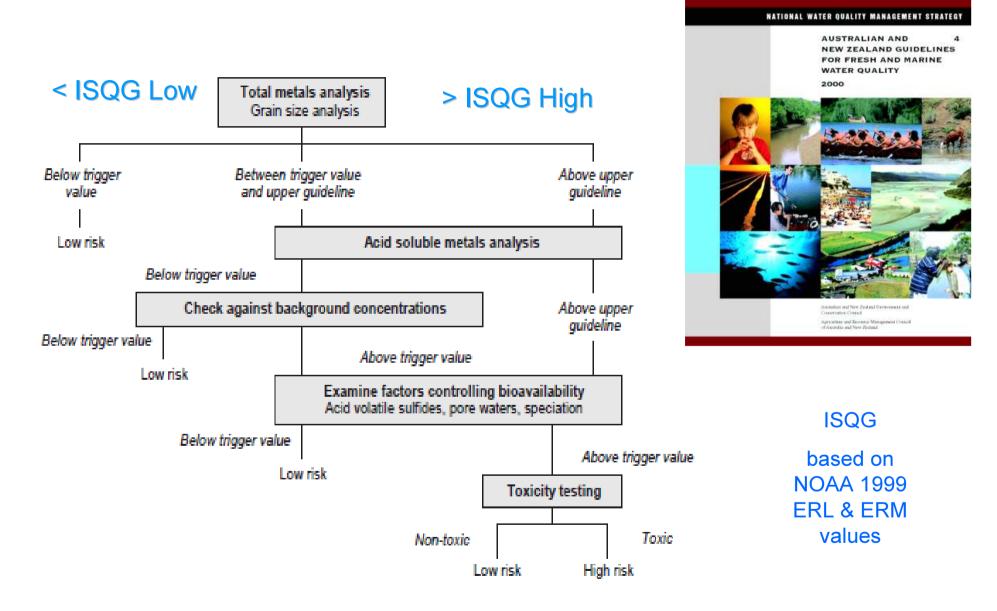
Overview

Sediment quality guidelines (U as toxicant)

- Framework approach
- Lack of U sediment quality guidelines

Biological effects data

- Approach
- Available Data
- Cost & Reality


Ranger uranium mine

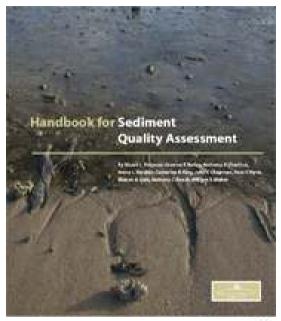
- Planning for closure
- Sediment quality data

Conclusions/questions

- Global situation?
- Way forward?

Sediment quality framework – 1

Screening level guidelines


Table A1. Recommended sediment quality guidelines (ANZECC/ARMCANZ 2000)

Contaminant	ISQG-low (Trigger value)	ISQG-high								
METALS (mg/kg dry wt)										
Antimony	2	25								
Cadmium	1.5	10								
Chromium	80	370								
Copper	65	270								
Lead	50	220								
Mercury	0.15	1								
Nickel	21	52								
Silver	1	3.7								
Zinc	200	410								

No uranium guideline

Predicted No Effect Concentration 100 mg/kg Sheppard et al 2005 Canadian temperate species (Thompson et al 2002)

Sediment quality framework – 2

- Multiple lines of evidence (biological & chemical)
 - Weight of evidence
 - qualitative (professional judgement)
 - semi-quantitative (ranking, scoring)
 - quantitative (statistical)

Site	Sediment Chemistry PAH-PCB- metal	Porewater Chemistry, TBT	AVS/ SEM	10-d Amphipod Survival - Avoidance	48-h Bivalve- Larvae Survival	20-d Polychaete Survival - Growth	Benthic Community Structure Abundance- diversity	Overall Assessment ^a	
								Abs. risk	Rel. risk
	Near field s	ites		-731		3	· · · · · · · · · · · · · · · · · · ·	**	0
	2-1-2	1	2	2-1	1-1	1-2	3-3	3	3
2	1-1-3	1	1	1-1	2-3	1-1	ND	2	2
3	3-1-2	1	1	1-1	3-2	1-2	2-1	3	3
4	2-1-2	1	1	2-1	1-3	1-2	2-1	3	3
5	2-2-2	1	1	1-1	3-3	1-1	2-1	2	2
6	2-1-2	1	1	1-1	1-1	1-1	3-1	2	1
	Far-field si	tes							
7	2-1-2	1	1	1-1	1-1	1-1	2-2	2	NA
8	1-1-2	ND	1	2-1	1-1	1-1	3-1	2	NA
9	2-1-2	1	1	1-1	1-1	1-1	1-1	1	NA

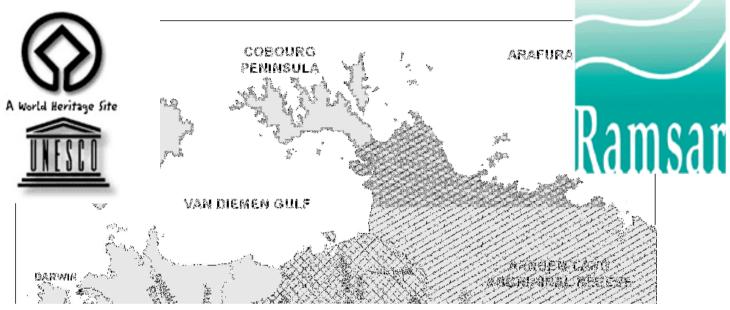
Resource intensive toxicity methods

Scientific debate over methods

Only do if [x] > SQG high

Biological effects data

Exposure pathways - which species?


Methods

- Chemical based models
- Species diversity/abundance across concentration gradient
 - Co-contaminants
- Transplants
 - Edge effects, solubility changes
- Spiked sediments
 - Compartmentalisation, controls
- Bioaccumulation / magnification
- Integr Environ Assess Manag. 2007 Jan; 3 (1): Predicting metal toxicity in sediments: a critique of current approach. Stuart L Simpson, Graeme E Batley

Resource intensive, Strict protocols

Broad understanding of limitations?

Ranger Uranium Mine

ERA respectfully acknowledges the Mirarr, Traditional Owners of the land on which the Ranger Mine is situated.

Closure planning

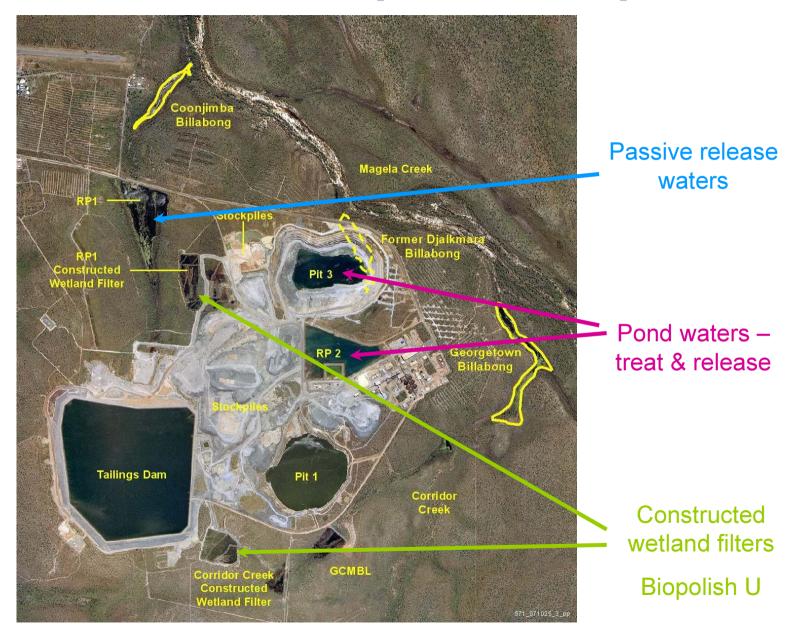
Environmental Requirements

- Incorporate into Kakadu National Park
- Traditional owners

Criteria

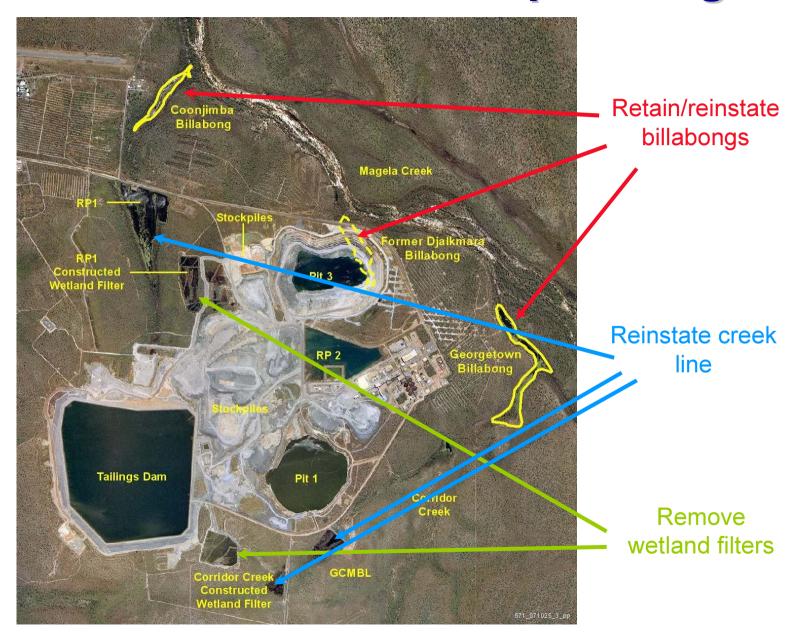
- Land use & Radiation
- Ecosystems
- Water quality (<u>sediments</u>)

Radiation criteria


- Well established dose assessment practices and limits
- UNSCEAR, ICRP, IAEA, National bodies (ARPANSA)

Sediment toxicity?

- ...low specific activity, uranium ... has greater potential to cause chemical rather than radiological toxicity
- Methods problematic



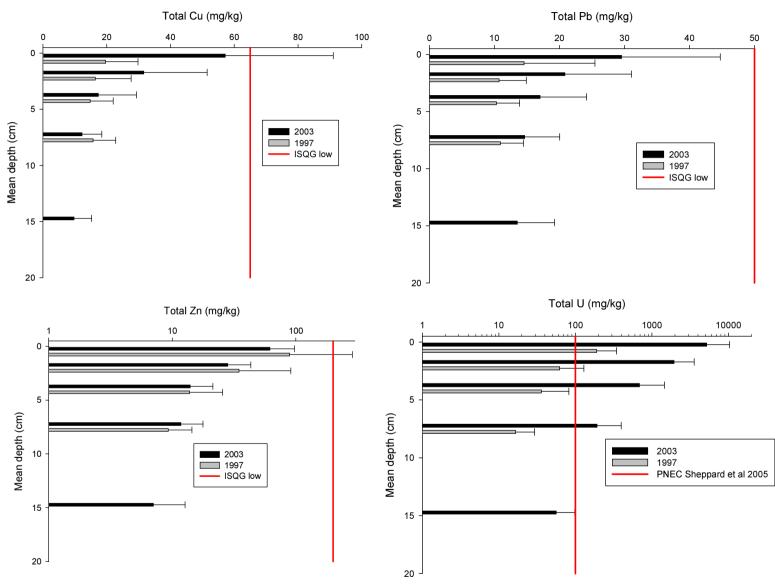
Waterbodies – operational phase

Waterbodies – closure planning

Sediment data

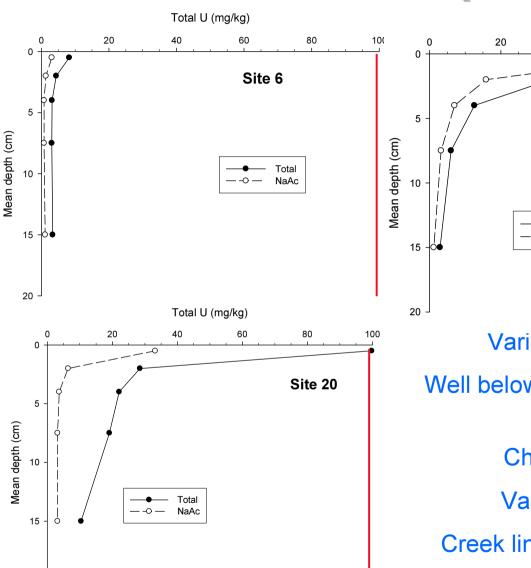
Spatial

- Onsite
- Off-site; control billabongs, Magela floodplain


Temporal

- Baseline
- >25 years specific research
 - phase associations, leachability, bioaccumulation, trophic transfer, attenuation capacity
- 20 years statutory prescribed monitoring
- Now project based monitoring

Methods


- Specific to research question in past
- Compatibility
- Interpretation wrt "contaminated site" status

Results – wetland filter

20 -

Results – retention pond

Verieties a consequence

Total U (mg/kg)

80

Site 16

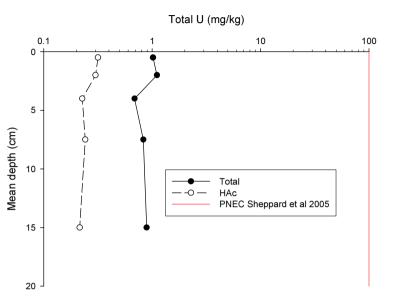
100

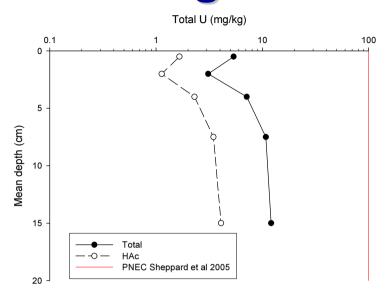
40

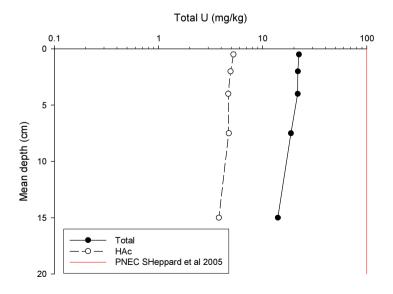
Variation across pond

Total

Well below or at temperate PNEC value


Change with depth


Variable availability


Creek line to be re-established

Cost of full scraping vs deriving sitespecific SQG

Results – natural billabong

All well below temperate PNEC value

Surface & depth similar

Benthic community changes nonmining related

Spatial characterisation upstream creek-line planned

Issues, Lessons,

Lack of sediment characterisation accompanying past biological studies

Cause – effect related to particular character

Standard basic suite of methods all studies regardless of aim

Pore water, TOC, particle size, leachates

Lack of relevant/reliable toxicity data

- PNEC for temperate species
- Only 1 U range finder test on local species (Cu study)

Issues, Lessons, Further work

Lack of sediment characterisation accompanying past biological studies

Cause – effect related to particular character

Standard basic suite of methods all studies regardless of aim

Pore water, TOC, particle size, leachates

Lack of relevant/reliable toxicity data

- PNEC for temperate species
- Only 1 U range finder test on local species (Cu study)

Site specific guideline needed – method?

- Chemical models
- Bioaccumulation loads
- Field based sediment toxicity
- Laboratory based sediment toxicity
- Multiple lines of evidence

Global situation?

Screening level guidelines exist for heavy metals & metalloids

- Pb, Zn, Cu, Cs, Cr, As
- Why not U?

Distribution of biological effects data

- Most for temperate species
- Not matched to distribution of potential contamination
- # publications increasing

Implementation

- Specialist knowledge and agreed approaches
- Differing levels of regulation/scrutiny
- Regulator understanding in face of scientific debate
- Cost for junior players/developing nations to derive local SQG

Need for U guidelines to guide appropriate response

Soils situation?

Way forward

Global database?

Review of information to derive regional screening guidelines?

Who?

- WHO
- UNEP
- IAEA toxic not radiological issue
- Industry coalition global
- Facilitate or conduct

Recommendation for IAEA to request support/action from appropriate body

Thank you

